Butein

製品コードS8036 バッチS803601

印刷

化学情報

 Chemical Structure Synonyms N/A Storage
(From the date of receipt)
3 years -20°C powder
1 years -80°C in solvent
化学式

C15H12O5

分子量 272.25 CAS No. 487-52-5
Solubility (25°C)* 体外 DMSO 55 mg/mL (202.02 mM)
Ethanol 55 mg/mL (202.02 mM)
Water Insoluble
* <1 mg/ml means slightly soluble or insoluble.
* Please note that Selleck tests the solubility of all compounds in-house, and the actual solubility may differ slightly from published values. This is normal and is due to slight batch-to-batch variations.

溶剤液(一定の濃度)を調合する

生物活性

製品説明 Butein, a plant polyphenol isolated from Rhus verniciflua, is able to inhibit the activation of protein tyrosine kinase, NF-κB and STAT3, also inhibits EGFR.
in vitro Butein inhibits the epidermal growth factor (EGF)-stimulated auto-phosphotyrosine level of EGF receptor in HepG2 cells, and also inhibits tyrosine-specific protein kinase activities of EGF receptor and p60c-src with IC50 of 65 μM in vitro. The inhibition is competitive to ATP and non-competitive to the phosphate acceptor, poly (Glu, Ala, Tyr) 6:3:1 for EGF receptor tyrosine kinase. In contrast, Butein non-significantly inhibits the activities of serine- and threonine-specific protein kinases such as PKC or PKA. [1] Butein inhibits Nuclear Factor(NF)-κB and NF-κB-regulated gene expression through direct inhibition of IκBα Kinase β on Cysteine 179 Residue. [2] Butein (10 μM) inhibits over 90% iNOS and COX-2 expression, as well as nitrite and TNF-α production in LPS-stimulated RAW 264.7 cells. Butein (10 μM) inhibits LPS-induced DNA binding activity of NF-κB, which is mediated through inhibition of the degradation of inhibitory factor-κB and phosphorylation of Erk1/2 MAP kinase, as well as increases binding of the osteopontin a vb3 integrin receptor. [3] Butein (20 μM) treatment induces morphologic changes of bladder cancer cells BLS(M) from elongated morphology to rounded epithelial-like cells, accompanied by downregulation of vimentin, and gaining of E-cadherin compared to untreated control cells, indicating the reversal of mesenchymal-like phenotype. Butein (20 μM) suppresses motility and invasion capacity of BLS(M) cells, and reverts EMT-like phenotype induced by TNF-α, through the ERK1/2 and NF-κB signaling pathways. [4] Butein inhibits the constitutive activation of STAT3 in HepG2 cells in a dose-dependent manner, with maximum inhibition occurring at 50 μM, mediated through the inhibition of activation of upstream kinases c-Src and Janus-activated kinase2. Butein (50 μM) also could completely inhibit IL-6-induced STAT3 phosphorylation in SNU-387 cells. Butein downregulates the expression of cyclin D1, Bcl-2, Bcl-xL, survivin, and VEGF, markers of STAT3 activation. Butein (50 μM) significantly enhance the apoptotic effects of doxorubicin from 18% to 55% and of paclitaxel from 15% to 42%. [5] Butein is as a powerful antioxidant against lipid and LDL peroxidation. Butein inhibits iron-induced lipid peroxidation in rat brain homogenate with an IC50 of 3.3 μM. Butein is as potent α-tocopherol in reducing the stable free radical diphenyl-2-picrylhydrazyl (DPPH) with IC0.2 of 9.2 μM. Butein also inhibits the activity of xanthine oxidase with an IC50 of 5.9 μM. Butein scavenges the peroxyl radical derived from 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) in aqueous phase. Furthermore, Butein inhibits copper-catalyzed oxidation of human low-density lipoprotein (LDL) in a concentration-dependent manner. Butein is a chelator of ferrous and copper ions. [6]
in vivo Butein at 2 mg/kg induces significant inhibition of hepatocellular tumor growth compared with the corn oil-treated controls. At necropsy on day 22 after initial treatment, there is more than 2-fold decrease in tumor growth in the Butein-treated group (mean relativetumor burden, 3.90) compared with the control group (8.46), associated with reduced constitutive p-STAT3 (9% vs 81% of vehicle group), Bcl-2 levels (26% vs 96% of vehicle group), and increased caspase-3 level (98% vs 21% of vehicle group) in HCC tumor tissues. [5] Butein shows antifibrogenic activity. Butein (25 mg/kg/day) reduces serum AST and ALT activation to 35% and 69%, respectively, of control CCl4-induced rat levels. Butein (25 mg/kg/day) reduces liver hydroxyproline contents and TBAR4 concentration to 54% and 54%, respectively. α1(I) collagen and TIMP-1 expression in Butein-treated rats is 28% and 20.3% compared with the values for the respective CCl4-treated control. [7]

プロトコル(参考用のみ)

細胞アッセイ 細胞株 Human hepatoma cells HepG2
濃度 ~50 μM
反応時間 1 days
実験の流れ The cells (5× 103/mL) are incubated in triplicate in a 96-well plate in the presence or absence of indicated concentration of Butein in a final volume of 0.2 mL for different time intervals at 37 ℃. Thereafter, 20 μL MTT solution (5 mg/mL in PBS) is added to each well. After a 2-hour incubation at 37 ℃, 0.1 mL lysis buffer (20% SDS, 50% dimethylformamide) is added, incubation is continued overnight at 37 ℃, and then the optical density at 570 nm is measured by plate reader.
動物実験 動物モデル Human hepatocellular carcinoma xenografts HepG2
投薬量 2 mg/kg
投与方法 intraperitoneal injection, 5 doses per week for 3 consecutive weeks

Selleckの高級品が、幾つかの出版された研究調査結果(以下を含む)で使われた:

ERα is a target for butein-induced growth suppression in breast cancer [ Am J Cancer Res, 2020, 10(11):3721-3736] PubMed: 33294263
A STAT3-NFkB/DDIT3/CEBPβ axis modulates ALDH1A3 expression in chemoresistant cell subpopulations [ Oncotarget, 2015, 6(14):12637-53] PubMed: 25868979

長期の保管のために-20°Cの下で製品を保ってください。

人間や獣医の診断であるか治療的な使用のためにでない。

各々の製品のための特定の保管と取扱い情報は、製品データシートの上で示されます。大部分のSelleck製品は、推薦された状況の下で安定です。製品は、推薦された保管温度と異なる温度で、時々出荷されます。長期の保管のために必要とされてそれと異なる温度で、多くの製品は、短期もので安定です。品質を維持するが、夜通しの積荷のために最も経済的な貯蔵状況を用いてあなたの送料を保存する状況の下に、製品が出荷されることを、我々は確実とします。製品の受領と同時に、製品データシートの上で貯蔵推薦に従ってください。