CHIP Antibody [C8P21]

Catalog No.: F4643

    Application: Reactivity:
    • Lane 1: PC12, Lane 2: L-929, Lane 3: Hela, Lane 4: COS-7
    1/

    当該製品は品切れ状态で、ごメールアドレスを教えていただければ、在庫があると、メールで顧客様に伝えます。

    代表番号: 045-509-1970|電子メール:sales@selleck.co.jp

    キーポイント

    WB
    転写条件(ウェット): 200 mA, 60 min

    使用情報

    Dilution
    1:1000
    1:100
    Application
    WB, IP
    Source
    Rabbit Monoclonal Antibody
    Reactivity
    Human, Mouse, Rat, Monkey
    Storage Buffer
    PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN3
    Storage (from the date of receipt)
    -20°C (avoid freeze-thaw cycles), 2 years
    Predicted MW
    32 kDa
    ポジティブコントロール PC-12 cell; L-929 cell; HeLa cell; C0S-7 cell
    ネガティブコントロール

    プロトコール

    WB
    Experimental Protocol:
     
    Sample preparation
    1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature.
    2. Adherent cell: Aspirate the culture medium and wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
    3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
    4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
    5. Remove a small volume of lysate to determine the protein concentration;
    6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
     
    Electrophoretic separation
    1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 10%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
    2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
     
    Transfer membrane
    1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
    2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
    3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
    4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
    Recommended conditions for wet transfer: 200 mA, 60 min.
    ( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
     
    Block
    1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
    2. Incubate the film in the blocking solution for 1 hour at room temperature;
    3. Wash the film with TBST for 3 times, 5 minutes each time.
     
    Antibody incubation
    1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
    2. Wash the film with TBST 3 times, 5 minutes each time;
    3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
    4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
     
    Antibody staining
    1. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
    2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.

    Datasheet & SDS

    生物学的記述

    Specificity
    CHIP Antibody [C8P21] detects endogenous levels of total CHIP protein.
    タンパク質の局在
    細胞質、ミトコンドリア、細胞核
    Uniprot ID
    Q9UNE7
    Clone
    C8P21
    Synonym(s)
    E3 ubiquitin-protein ligase CHIP; Antigen NY-CO-7; CLL-associated antigen KW-8; Carboxy terminus of Hsp70-interacting protein; RING-type E3 ubiquitin transferase CHIP; STIP1 homology and U box-containing protein 1; STUB1; CHIP
    Background
    CHIP (C-terminus of Hsc70-interacting protein), also known as STUB1, is a co-chaperone protein and functional E3 ubiquitin ligase of the U-box E3 ligase family, linking molecular chaperones to the ubiquitin-proteasome system for protein quality control. CHIP contains three N-terminal tetratricopeptide repeat (TPR) domains that mediate interactions with molecular chaperones Hsc70, Hsp70, and Hsp90, and a C-terminal U-box domain responsible for E3 ubiquitin ligase activity. The TPR domains form a “knob and hole” structure composed of α-helices that facilitate protein-protein interactions, while the U-box domain, although structurally similar to a RING-finger, is stabilized by hydrogen bonds rather than zinc ions. CHIP forms asymmetric homodimers, with dimerization stabilized by interactions between U-box domains and central helical hairpins; typically, only one U-box is active in ubiquitin ligase function at any given time. CHIP mediates the ubiquitination of client polypeptides bound to chaperones, targeting misfolded or damaged proteins for proteasomal degradation and thereby playing a critical role in cellular stress responses and protein quality control. It is involved in the degradation of disease-related proteins such as cystic fibrosis transmembrane conductance regulator, p53, huntingtin, ataxin-3, Tau protein, and α-synuclein, implicating CHIP in neurodegenerative and other diseases.
    References

    技術サポート

    ストックの作り方、阻害剤の保管方法、細胞実験や動物実験の際に注意すべき点など、製品を取扱う時に問い合わせが多かった質問に対しては取扱説明書でお答えしています。

    Handling Instructions

    他に質問がある場合は、お気軽にお問い合わせください。

    * 必須

    大学・企業名を記入してください
    名前を記入してください
    電子メール・アドレスを記入してください 有効なメールアドレスを入力してください
    お問い合わせ内容をご入力ください