PLCβ3 Antibody [E24D14]

Catalog No.: F7497

    Application: Reactivity:
    • Lane 1: Hela, Lane 2: OVCAR3, Lane 3: F11, Lane 4: Neuro-2a
    1/

    当該製品は品切れ状态で、ごメールアドレスを教えていただければ、在庫があると、メールで顧客様に伝えます。

    代表番号: 045-509-1970|電子メール:sales@selleck.co.jp

    キーポイント

    WB
    SDS-PAGE の分離ゲルの推奨濃度:5%

    使用情報

    Dilution
    1:1000
    Application
    WB
    Source
    Rabbit Monoclonal Antibody
    Reactivity
    Human, Mouse, Rat, Monkey
    Storage Buffer
    PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN3
    Storage (from the date of receipt)
    -20°C (avoid freeze-thaw cycles), 2 years
    Predicted MW
    150 kDa
    ポジティブコントロール HeLa cells; F11 cells; Neuro-2a cells; OVCAR8 cells
    ネガティブコントロール

    プロトコール

    WB
    Experimental Protocol:
     
    Sample preparation
    1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature.
    2. Adherent cell: Aspirate the culture medium and wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
    3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
    4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
    5. Remove a small volume of lysate to determine the protein concentration;
    6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
     
    Electrophoretic separation
    1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 5%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
    2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
     
    Transfer membrane
    1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
    2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
    3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
    4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
    Recommended conditions for wet transfer: 200 mA, 120 min.
    ( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
     
    Block
    1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
    2. Incubate the film in the blocking solution for 1 hour at room temperature;
    3. Wash the film with TBST for 3 times, 5 minutes each time.
     
    Antibody incubation
    1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
    2. Wash the film with TBST 3 times, 5 minutes each time;
    3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
    4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
     
    Antibody staining
    1. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
    2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.

    Datasheet & SDS

    生物学的記述

    Specificity
    PLCβ3 Antibody [E24D14] detects endogenous levels of total PLCβ3 protein.
    タンパク質の局在
    細胞質、細胞内膜系、細胞核
    Uniprot ID
    Q01970
    Clone
    E24D14
    Synonym(s)
    1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3; Phosphoinositide phospholipase C-beta-3; Phospholipase C-beta-3 (PLC-beta-3); PLCB3
    Background
    PLCβ3 (phospholipase C beta 3) is a critical effector in G protein-coupled receptor signaling, hydrolyzing phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) to trigger intracellular calcium release and activate protein kinase C (PKC). PLCβ3 comprises an N-terminal pleckstrin homology (PH) domain for PIP2 anchoring, four EF-hand calcium-binding motifs, a catalytic TIM barrel divided into X and Y regions by an autoinhibitory linker, a C2 domain for phospholipid interactions, and a unique C-terminal coiled-coil domain that interfaces with Gαq GTPase. Activation is mediated primarily by Gαq/11 or Gβγ subunits binding the C-terminal domain, which relieves autoinhibition and realigns the catalytic core for PIP2 hydrolysis at the plasma membrane. Phosphorylation at Ser1105 by PKA/PKC or at Ser537 by CaMKII further regulates basal activity and desensitization through steric and conformational changes in the regulatory linker. PLCβ3 amplifies signaling cascades in immune cells, neurons, and smooth muscle by maintaining IP3-mediated Ca2+ oscillations and DAG-PKC pathways, processes essential for cytokine production, neurotransmitter release, vascular contractility, and platelet aggregation. Loss-of-function PLCβ3 variants can impair chemotaxis and contribute to immunodeficiency, while gain-of-function mutations are linked to hypertension, schizophrenia, and cancer progression due to enhanced ERK/MAPK signaling and neoplastic transformation.
    References

    技術サポート

    ストックの作り方、阻害剤の保管方法、細胞実験や動物実験の際に注意すべき点など、製品を取扱う時に問い合わせが多かった質問に対しては取扱説明書でお答えしています。

    Handling Instructions

    他に質問がある場合は、お気軽にお問い合わせください。

    * 必須

    大学・企業名を記入してください
    名前を記入してください
    電子メール・アドレスを記入してください 有効なメールアドレスを入力してください
    お問い合わせ内容をご入力ください